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Abstract--A theoretical analysis of the dynamics of dumbbell-like colloidal particles moving by 
electrophoresis is presented. The dumbbell consists of two rigid spheres of arbitrary radii connected by 
an infinitesimally thin, rigid rod. Each sphere has a uniform but arbitrary zeta potential and is surrounded 
by a thin electrical double layer, as defined in the Helmholtz limit. The analysis utilizes the linearity of 
the governing electrokinetic equations to reduce the problem to subproblems for which the solutions 
already exist or are easily derived. Translational and angular velocities of the nonuniformly charged 
dumbbell are obtained by utilizing rigid-body mechanics, solutions for the electrophoresis of two freely 
suspended spheres and solutions for the components of the grand resistance matrix for two spheres 
translating and rotating with arbitrary velocities. The results, which depend linearly on the zeta potentials 
of the spheres, are presented in the form of four dimensionless functions, two to describe the translation, 
one to describe the rotation and one to locate the "center" of the dumbbell. These four functions depend 
only on the spheres' radii and the distance between the centers of the spheres. Sample calculations are 
presented to illustrate features of the electrophoretic motion of doublets that could be formed by 
heterocoagulation or bridging mechanisms. Estimates of angular velocities indicate that only modest 
fields might be required to align a suspension of doublets, even when the suspension undergoes shear 
flow. 
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INTRODUCTION 

Electrophoresis provides a means to characterize and separate colloidal species on the basis of 
surface charge or more correctly, surface potential with respect to the bulk fluid. Smoluchowski's 
equation relates the particle velocity U to the applied electric field Eoo and the zeta potential 
associated with the particle's surface: 

= ~ Eoo, [1] U 

where t/and E are the viscosity and dielectric constant of the fluid, respectively. The assumptions 
used to derive [1] are: (i) the particle is rigid and nonconducting; (ii) the local mean radius of 
curvature/~ is much larger than the Debye screening length x -  J of the solution ( x R ~  oo); (iii) the 
surrounding fluid is unbounded; and (iv) the zeta potential is uniform over the particle surface. 
M orrison (1970) showed that [1] holds for particles of arbitrary shape and that no particle rotation 
occurs, given the above assumptions. A boundary-layer analysis of the double layer by Dukhin 
& Derjaguin (1974) and O'Brien (1983) has shown that the effects of double-layer polarization may 
be neglected when 

ge~ - 1 

where z is the charge number of the counterion with the largest absolute valency in the electrolyte, 
e is the charge on one proton, T is the fluid temperature and k is Boltzmann's constant. Theories 
have been developed to account for zeta potential variations over the surface of spherical 
(Anderson 1985) and nonspherical (Fair & Anderson 1989; Teubner 1982) particles, assuming (i), 
(ii) and (iii) are valid assumptions. 

Interest in the development of theories to describe the electrophoresis of suspensions has resulted 
in several approaches to multiparticle systems, including the use of capillary tube models, unit cell 
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models, lattice models or periodically constricted tubes (Kozak & Davis 1989). Another 
approach has been to examine the electrophoresis of two interacting particles and then attempt 
to describe the concentration effects in terms of the two-sphere description (Anderson 1981; 
Chen & Keh 1988). This approach considers the effects of electric field and hydrodynamic 
interactions on the electrophoretic velocity of a particle because of its proximity to another 
particle. Typically, these theories have been directed toward suspensions in which flocculation or 
coagulation is absent. In many suspensions, especially heterogeneous suspensions, coagulation 
occurs to form aggregates which would be expected to affect the behavior of the suspension as a 
whole. An aggregate formed by heterocoagulation or bridging represents an interesting system for 
which both nonuniform charge effects and "particle interactions" must be accounted. Here, the 
term "particle interactions" refers to interactions between particles which compose a single 
aggregate. 

A theory for the electrophoresis of nonuniformly charged ellipsoidal particles (Fair & Anderson 
1989) suggests that a particle with nonuniform charge and nonspherical shape has interesting 
dynamics in an electric field. For example, an oblate or prolate spheroid having a nonzero dipole 
moment of the zeta potential tends to align with the electric field, in contrast to the zero rotation 
predicted for uniformly charged particles (Morrison 1970). Furthermore, a quadrupole moment of 
the zeta potential distribution on a spheroid causes the translational velocity to depend on the 
particle's orientation with respect to the applied field. Since the Brownian mobility of micron-sized 
particles in liquids is small, the application of an electric field to a suspension of single particles 
and multiparticle aggregates might significantly influence the microscopic structure through 
alignment of the particles and through the distribution of their translational velocities. If the 
electrokinetic effects are comparable to the hydrodynamic effects, electric fields might influence the 
rheology of the suspension. 

In an attempt to understand and model the electrophoresis of aggregates formed in a 
heterogeneous suspension, we have chosen to study the most elementary aggregate, a doublet 
formed by heterocoagulation or bridging of two different colloidal particles in the suspension. 
The objective of this work is to provide a theory for the electrophoretic mobility of a 
doublet modelled as a dumbbell composed of two spheres of arbitrary sizes connected by an 
infinitesimally thin, rigid rod of arbitrary length. Since the connecting rod is thin, we assume that 
it does not affect the electric field or the velocity field and only serves to insure the rigid-body 
motion of the dumbbell. Each sphere is rigid and nonconducting with a uniform but arbitrary zeta 
potential. We also invoke the thin double-layer assumption with the understanding that the 
magnitudes of the zeta potentials are sufficiently small to neglect polarization effects, as required 
by [2]. 

In this paper we develop a solution for the dumbbell problem which satisfies the electrokinetic 
equations in the limit of thin double layers. We utilize the linearity of the governing equations to 
divide the problem into two subproblems for which the solutions already exist or are easily 
obtained. The first subproblem ("free" problem) is the electrophoresis of two freely suspended 
spheres without the connecting rod. The second subproblem ("connector" problem) involves the 
Stokes-flow resistance of two spheres translating and rotating such that the force, torque and 
rigid-body motion constraints on the dumbbell are satisfied. 

DYNAMICS OF A DUMBBELL IN AN ELECTRIC FIELD 

The system under consideration is a dumbbell composed of two charged spheres with thin double 
layers, labelled 1 and 2 with radii al and a2 and zeta potentials (l and (2 as shown in figure 1. The 
sphere centers are separated by a distance l and the orientation of the dumbbell is defined by a 
unit vector e directed from the center of sphere 1 toward the center of sphere 2. An applied electric 
field E~ causes the dumbbell to translate with velocity Uo and rotate with angular velocity f~. The 
velocity Uo refers to the translational velocity of a point "o" on the dumbbell designated as the 
center or "origin". For low to moderate applied electric fields, Uo and f~ are linearly proportional 
to E~. Assuming no inertial effects, the quasi-steady fluid velocity must satisfy the Stokes 
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Figure 1. Charged colloidal dumbbell in an applied electric field. The rigid connecting rod is assumed to 
be infinitesimally thin relative to the size of  the spheres; I is the distance between the centers of  the spheres. 

equations, modified by the inclusion of  the electrical stress which results from interactions of  the 
applied electric field with the charged fluid in the thin double layer: 

r/V2v - Vp + V'z  e = O, [3a] 

V.v = O; [3b] 

on SP: v = Uo + ~ x to, [3c] 

r ~ 0o: v ~ 0 ,  [3d] 

where v is the fluid velocity, p is the pressure, r o is the position vector measured from the origin, 
S p denotes the particle surface and ~e is the electrical stress tensor. In principle, we should also 
apply [3c] to the surface of  the connecting rod in addition to the surfaces of  the spheres; however, 
we assume it is sufficiently thin, compared to a~ and a2, to have no effect on the fluid dynamics. 
For  a fluid with a spatially uniform dielectric constant, v ' ~ e =  pe E, where pe(ro) is the charge 
density within the diffuse double layer. The force and torque acting on a boundary which 
encompasses the particle and its thin double layer are zero, since the region enclosed by the 
boundary represents a body with no net charge. These two additional relationships are necessary 
to solve for Uo and f~. On this boundary the contributions to the force and torque from the electrical: 
stress are negligible because p~(ro) essentially zero outside the boundary. Since xai---, ~ ,  the 
boundary appears to coincide with the particle surface on length scales O(ai), which enables us 
to evaluate contributions to the force and torque from the stress tensor over a known surface in 
space defined by the particle's surface rather than an imaginary boundary. This approach has been 
used previously to determine electrophoretic velocities of  compac,t particles (Anderson 1985; Fair 
& Anderson 1989). 

Since the force acting on a rigid body is independent of  the choice of  origin, the constraint that 
the net force is zero on the dumbbell can be expressed in terms of  the forces acting on the two 
spheres: 

F~ + F2 = 0. [4] 

Though the torque acting on a rigid body usually depends on the choice of  origin, for a force-free 
dumbbell the torque is independent of  the choice of origin. To prove this we first express the total 
torque about the dumbbell's origin in terms of the forces and torques acting on each sphere: 

To = TI + T2 + rol x F t + ro2 × F2, [5] 

where ro~ is the position vector for the center of sphere i relative to the origin of the dumbbell and 
Ti is the torque on sphere i about its center. Using [4] to eliminate FI gives 

To = T~ + T 2 + (ro2 - r o, ) x F~, [6] 

which is independent of  the choice of  the origin since (ro2 - ro~ ) = le. The constraint that the torque 
acting on the dumbbell is zero becomes 

T1 + T2 + le x F2 = 0. [7] 
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Rather than attempting to solve [3] along with [4] and [7] directly for Uo and f~ given z e, it is more 
convenient to utilize the linearity of the governing equations to divide the problem into a "free" 
part and a "connector" part, such that superposition of the solutions for these two subproblems 
yields the solution to the dumbbell problem: 

Ui = U[ + U~, [8a] 

n,  = n~ + n~, [8bl 

E = F[ + F~, [8c1 

T, = T~ + T~, [8d] 

v = v r + ¢:  [8e ]  

and 

p = p f  + p C ,  [8f] 

where subscripts i = 1, 2 refer to quantities evaluated at the centers of the spheres. The "free" part 
(superscript f) considers two freely suspended spheres moving by electrophoresis. The "connector" 
part (superscript c) considers two interacting spheres in Stokes flow such that superposition with 
the "free" part gives the rigid-body motion of the dumbbell governed by [3], [4] and [7]. Both the 
"free" and "connector" parts can be considered from the perspective of parallel and perpendicular 
orientations of the director e with respect to the direction of the applied field E~. 

THE " F R E E "  PROBLEM 

The "free" case considers the motion of two spheres, each of which are free to translate and 
rotate in response to the electric field, v r and pf must satisfy [3a] and [3b] along with the following 
boundary conditions: 

on SP: ¢ r f [9a] = U ,  + ~  xr~, 

on S~: v r = U~ + f~  x r2, [9b] 

r ~ oo: v f ~ 0, [9c] 

where rj and r 2 are position vectors with origins at the respective sphere centers. The net force and 
torque on each sphere are zero because the spheres are not connected. The solution of this problem 
must account for the perturbations to the electric field and velocity field caused by the proximity 
of the two spheres. The governing equations can be solved by dividing the fluid into an "inner" 
and an "outer" region and using a matching procedure to ensure a continuous solution, whereby 
the solution obtained for the "inner" region supplies a boundary condition for "outer" region 
(Anderson 1985). 

The "inner' region encompasses the thin double layer where the fluxes of charge and fluid are 
locally one-dimensional and parallel to the particle's surface. Poisson's equation relates the 
electrical potential to the charge density. The solution for the flow in the "inner" region gives the 
Helmholtz expression for the fluid velocity at the outer edge of the double layer relative to the local 
velocity of the particle's surface: 

v~ = - - -  E~.  [ 101 
4 ~ t /  

E~ is the local electric field on the surface of sphere i found by solving Laplace's equation in the 
"outer" region: 

V24, = 0; [1 la] 

on SP+: n.Vq~ = 0, [llb] 

on S~+: n.V4~ = 0, [llc] 

r ~ ~ :  -Vq~ ~ E~, [1 ld] 

on SP+: E~ = -Vq~, [1 le] 
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where n is the unit normal to the dumbbell surface pointing into the fluid. SiP ÷ denotes the surface 
which coincides with the outer edge of the double layer around sphere i. Since the double layers 
are thin, SiP ÷ and S~ (the actual surface of the sphere) are indistinguishable on the scale of ai. 

The "outer"  region consists of the fluid external to the outer edge of the thin double layer. In 
this region Pe is essentially zero and the electrical stress tensor is negligible. The equations and 
boundary conditions which govern the flow are: 

r/Vv r -  Vpf= 0, 

V" v f = 0; 

on S~+: V f f f = UI  d- ~')1 × rl q -v ]  

on S~ + v r r r • = U 2  4" f~2 x r 2 -4- v)  

r --* o0: vf--* 0, 

where v~ is the "slip" velocity given by [10]. Requiring that 

= = 0 

and 

[12a] 

[12b] 

[12c] 

[12d] 

[12el 

[131 

T~ = T~ = 0 [14] 

provides closure to solve for the translational and angular velocities of the spheres. 
The velocities of the two "free" spheres undergoing electrophoresis can be expressed as follows: 

E 
U, = ~ [(~ + (~2 - (t)Ai)ee + (~ + (~2 - ~I)B~)(I - ee)].E~, [15a] 

E 
U2 = ~ [(~2 + (~, - ~21A2) ee + (~z + (~, - ~2)Bz)(l - ee)] •Eo~, [15b] 

E 
a,f~, = ~-~q (~z-  ~,)C,e x Eo~ [15c] 

and 

E 
a2~2 = ~ ((2 -- (,)C2e x E~, [15d] 

where I is the unit dyadic. Two solutions are currently available for the dimensionless parameters 
(A,, A2, B~, B2, C~, C2). The first (Chen& Keh 1988) is based on a method of reflections; the results 
are reproduced in appendix A correct through O ( / - 7 ) .  The second (Keh & Chen 1989a, b) was 
obtained by utilizing bispherical coordinates• For the range of separation distances from 
(al+a2)/l=0.99 to (al+a2)/l=0.2, AI and Az were evaluated for three size ratios 
(a t/a2 = 1, 0.5, 0.2) and Bt, B2, CI and C2 for two size ratios (a~/a2 = 1, 0.5). These results suggest 
that the solution obtained by the method of reflections holds for moderate to large separation 
distances but becomes increasingly inaccurate as the separation distance decreases, especially for 
the angular velocities. The solution using bispherical coordinates indicates that the smaller sphere 
rotates increasingly faster than the larger sphere as the separation distance decreases, while the 
method-of-reflections solution predicts that the spheres have the same angular velocities. The 
direction of rotation is the same for both spheres, unlike the case of two sedimenting spheres (Chen 
& Keh 1988; Keh &Chen  1989b). We note that the solution obtained by Reed & Morrison (1976) 
for the electrophoresis of two equal-sized spheres using bispherical coordinates does not apply since 
the spheres were not allowed to rotate freely. 

THE " C O N N E C T O R "  PROBLEM 

The "connector" problem involves solving for four unknown 
velocities that yield a solution to the original dumbbell problem 

translational and angular 
when they are combined 
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with the results of the 
equations: 

on SP: 

on SP: 

r --* o 0 :  

"free" case. The fluid dynamics must satisfy the classical Stokes 

qV2v c - Vp c = 0, [16a] 

V'v ¢ = 0; [16b] 

v ~ = U~ + t)~ x r, ,  [16c] 

v ~ = US + ~ x r2, [16d] 

re--* 0. [16e] 

Since the forces and torques acting on the spheres in the "free" case are zero, [4] and [7] can be 
expressed in terms of  the "connector" forces and torques using [8c] and [8d] to give 

and 

F~ + ~ = 0 [17] 

T~ + T~ + le x ~ = 0. [18] 

These relationships supply two of the four vector constraints required to close the problem. The 
other constraints result from the consideration of  the rigid-body mechanics of  the dumbbell. The 
angular velocity of a rigid body is independent of the choice of origin giving, as the third constraint, 

fl~ -- ~ = f~ -- n~. [19] 

The final constraint utilizes the standard rigid-body description of  the velocity at point x on the 
dumbbell: 

U(x) = Uo + D x rox, [20] 

where rox is the position of x relative to the origin. Applying [20] with x at the center of each sphere 
and eliminating Uo gives 

U 2 - U| = ~ x (ro2 - ro| ). [21] 

Using the fact that ~ = fl| = fl  2 and substituting [8a] and [8b] into the above expression gives the 
final constraint: 

U~ - U~ - f~ x le = U~ - U: f + f~ × le. [22] 

Therefore, the two-sphere hydrodynamics problem must be solved such that U~, US, fl~ and fl~ 
satisfy [17]-[19] and [22], with the velocities of  the "free" problem known. 

The force and torque on each of  the spheres obtained from a solution of  [16] can be expressed 
in terms of the translational and angular velocities using the grand resistance matrix formalism of 
Brenner & O'Neill (1972): 

T2 

= - r / R  I 
u~ 

us 
n~ 
n~ 

[23] 

where R is the grand resistance matrix for two spheres. R is a 4 x 4 matrix whose elements are 
dyadic resistance coefficients with the following general form: 

Rj, = R~,ee + RT,(I - ee) + R; ,g  'e, [24] 

where g is the permutation triadic (g = - I  x I) and I is the unit dyadic. The resistance scalars 
(RPk, R~,, R~,) are functions of the radii of the spheres and the separation distance. 

In this paper we used the results of Jeffrey & Onishi (1984a) that are valid for arbitrarily-sized 
spheres and arbitrary separation distances. They provide three solutions for each of  the com- 
ponents: a method-of-reflections solution; an asymptotic solution for nearly touching spheres; and 
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a composite solution which combines the results from the method of reflections with those from 
the asymptotic solution. In appendix A we list the expressions for the resistance scalars that were 
obtained by the method of reflections. The composite solution represents the singular terms which 
appear in the asymptotic solution more efficiently than the series solution obtained by the method 
of reflections. We solved the recurrence relationships given by Jeffrey & Onishi (1984a) using the 
corrections given in appendix B and retained terms through 0(l  -5°) for each series in the composite 
solution. To test the accuracy of the composite solution we numerically evaluated the expressions 
for the scalar resistances and obtained good agreement with the tabulated results of Davis (1969), 
obtained using bispherical coordinates. As a further check we computed the components of the 
grand resistance matrix for a dumbbell using the two-sphere grand resistance matrix and found 
excellent agreement with the tabulated results of Adler (1981), obtained using bispherical 
coordinates. Appendix C outlines the method utilized by both Adler (1981) and ourselves to obtain 
the grand resistance matrix for a dumbbell using the two-sphere grand resistance matrix. 

We obtained an analytical solution for the "connector" velocities in terms of the "free" velocities 
and the scalar components of R by using [23] and solving [17]-[19] and [22] simultaneously; the 
details are given elsewhere (Fair 1990). Rather than give the explicit solution for the "connector" 
velocities here, in the next section we give the final results for the dumbbell obtained by combining 
the "free" and "connector" velocities. 

RESULTS 

Since the governing equations and constraints are independent of the location of the origin of 
the dumbbell, the origin is arbitrary and only affects the presentation of the results for the 
translational velocity. We place the origin at the center of hydrodynamic stress of the dumbbell 
to enable our results to be used directly in the determination of the effects of particle orientation 
on the average translational velocity of an ensemble of dumbbells or on the time-averaged 
translational velocity of an individual dumbbell. The center of hydrodynamic stress is the unique 
point for bodies of revolution at which there is no coupling between translation and rotation 
(Happei & Brenner 1973); i.e. the force on the body depends only upon the translational velocity 
at that point and the torque about the point depends only upon the rotational velocity. For the 
dumbbell this point lies along the line connecting the centers of the spheres a distance IXol from 
the center of sphere 1. Appendix C outlines the procedure used to determine Xo~ using the grand 
resistance matrix for two spheres. 

The electrophoretic motion of the dumbbell is obtained by combining the results of the "free" 
and "connector" problems: 

and 

Uo = (1 - X0, )(U~ + U]) + Xo, (Uf~ + U~) [25a1 

f~ = f~ + f~] = f~ + f~. [25b] 

Substitution of the "free" and "connector" velocities into [25] leads to the following expressions: 

and 

£ 
Uo = ~ [MPee + Mn(I - ee)].E~ [26a] 

n = ~ Ne  × E~,  [26b1 

where M p and M" can be conveniently expressed as linear functions of the zeta potentials: 

MP = [~t (1 - K p) + ~2K p] [26c] 

and 

M" = [~l (1 - K0 + ~2 K~]. [26d] 
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The dimensionless parameters K p, K" and N are functions of the resistance scalars (see [24]) and 
the "free" velocity parameters (see [15]), and therefore, depend only on al/a2 and (a~ + az)/l: 

Kp = (RPl + R~I)AI + (RP2 + R~2)(1 - A2) 
RiPl + R~2 + R~I + R~2 ' [27a] 

N = hlh6 - h4h3 -- h3h5 + h2h6 
+ I -- g t -- B 2 [27b] 

hi h5 -- h4h2 

and 

where 

and 

h3h5 - h2h 6 
K"  = Bt 4 hi hs - h4h2 + Xol N,  [27c] 

I(R~1 + R~2 ) - (R~, + R~2 + R~I + R~2 ) 
Xo~-- 

l(R~t + R~2 + R~t + R~2) 

h I = g ] ~ l + R ~ l - ( R ] 3 + R s 2 3 + R ] 4 + R s 2 4 )  
~ k 

l 

l ' 

h3 = (R]~" + RS23+ R]4 + RS24) ( B'  + B2 1) 
h4 = -Rs31 - R~41 -- R~3 - R~4 + IR~l - ( R]3 

(R~3 
h5 = - R~32 - R]2 + R~23 + RS24 + IR~2 + 

+ (R~3 + R,~3) --~ + (R~4 + R,~4) -~, 

-I- R~4 + R,~ 3 + R~'~ 
l ] 

+ + R:3 + Rb'  
] l 

[27d] 

[27e] 

[27f] 

[27g] 

[27h] 

[27i] 

In the limit (at + a2)/l ~ 0, there is no interaction between the spheres except that required by 
the connecting rod, and using the relations given in appendix A, we obtain 

KP= K " = ( 1  +a~'~ -t, [28a] 
a2 } 

N = 1 [28b] 

and 

Xo,= 1 + ~  . [28c1 
a2 / 

For the special case when ~t = ~ ,  Smoluchowski's equation holds with f~ = 0 for all values of aj/a2 
and (al + a2)/l. 

The additional fore-aft symmetry imparted to the dumbbell when at = a2 provides a means to 
obtain a solution for this special case. The center of hydrodynamic stress is at the midpoint between 
the spheres (Xot = 1/2). The original problem, defined by [3] and the zero force and torque 
constraints, can be split into two problems, one symmetric and one anti-symmetric with respect 
to the zeta potentials of the spheres. The symmetric problem gives both spheres the same potential, 
equal to (~ + ~2)/2. Smoluchowski's result applies to this case: 

o' m0 
o 4r~q k z /  
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Figure 3. K p, as defined by [26] and [27], vs the dimensionless 
center-to-center distance. Dashed lines indicate the method- 
of-reflections solution and solid lines indicate the solution 

listed in table 1. 

For the antisymmetric case, with the zeta potentials equal in magnitude but opposite in sign, we 
obtain 

U 7  = O. [301 

By adding these solutions together we have 

K p = K n : ½. [311 

Since Q..ti cannot be deduced easily, we cannot obtain the rotational parameter N for this special 
case without following the complete procedure described previously. 

Figure 2 shows how the center of  hydrodynamic stress "o" varies with the separation between 
the spheres and the ratio of  their radii. Figures 3-5 are plots of K p, K n and N constructed using 
the numerical results listed in table 1. These numerical values were calculated using the composite 
solution for the scalar resistances (Jeffrey & Onishi 1984a) and the parameters for the "free" 
velocities tabulated by Keh & Chen (1989a, b). The method-of-reflections results correct to O (1-7), 
obtained using the expressions for "free" velocities and the resistance scalars given in appendix A, 
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Figure 4. K", as defined by [26] and [27], vs the dimensionless 
center-to-center distance. Dashed lines indicate the method- 
of-reflections solutions and solid lines indicate the solution 

listed in table 1. 
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Figure 5. N, as definedby [26] and [27], vs the dimensionless 
center-to-center distance. Dashed lines indicate the method- 
of-reflections solution and solid lines indicate the solution 

listed in table 1. 
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Table 1. Numerical values of the dimensionless parameters 
defined in [26] and [27] and plotted in figures 2-5 a 

al/a2 (a I + a2)/l K p K n N Xol 

0.20  0.8638 0.8486 
0 .40  0.8995 0.8694 
0 .60  0.9359 0.8978 
0 .80  0.9656 0.9319 

0.20 0 .90  0.9767 0.9491 
0.95 0.9813 0.9572 
0.97 0.9830 0.9603 
0.98 0.9838 0.9618 
0 .99  0.9845 0.9634 

0 .20  0 .6925  0.6784 0.9339 0.6792 
0 .40  0 .7266  0.6907 0.8017 0.6970 
0 .60  0 .7665  0.7035 0.6755 0.7224 
0 .80  0 .8060  0.7172 0.5861 0.7552 

0.50 0 .90  0 .8245  0.7234 0.5715 0.7734 
0.95 0.8334 0.7230 0.5928 0.7826 
0.97 0.8369 0.7195 0.6231 0.7863 
0.98 0.8386 0.7155 0.6540 0.7882 
0.99 0.8403 0.7072 0.7197 0.7900 

0 .20  0 .5000  0.5000 0.9557 0.5000 
0 .40  0 .5000  0.5000 0.8632 0.5000 
0 .60  0 .5000  0.5000 0.7712 0.5000 
0 .80  0 .5000  0.5000 0.7123 0.5000 

1.00 0 .90  0 .5000  0.5000 0.7206 0.5000 
0.95 0 .5000  0.5000 0.7648 0.5000 
0 .97  0 .5000  0.5000 0.8128 0.5000 
0.98 0 .5000  0.5000 0.8585 0.5000 
0 .99  0 .5000  0.5000 0.9512 0.5000 

aThese results were computed using the composite solution 
of Jeffrey & Onishi (1984a) through O(1-5°) for the 
resistance coefficients and the tabulated results of Keh & 
Chen (1988a, b) for the "free" velocities. 

are also p lo t ted  in figures 2-5.  A t  small  separa t ion  distances,  the method-of- ref lec t ions  results 
underes t imate  the magn i tudes  o f  the pa rame te r s  for the " f ree"  velocities and,  consequent ly ,  the 
results for  K" and  N do no t  give the correct  behav ior  a t  these separat ions .  The  me thod-o f -  
reflections results  for K p show excellent  agreement  at  all separa t ion  dis tances  with the results listed 
in table  1. 

In  many  systems o f  interest ,  the separa t ion  dis tance between the spheres may  be small  as a result  
o f  te ther ing by  po lymer  br idges  or  by coagu la t ion  into a p r imary  or  secondary  m i n i m u m  of  the 
energy profile.  Our  results for  small  separa t ions  and ex t rapo la t ions  to the case o f  touching  spheres 
p rov ide  a mode l  for  these systems. The results for  K ~ are  readi ly  ex t rapo la t ed  to the case o f  
touching  spheres,  but  it is difficult to accura te ly  ex t rapo la te  the results for K n and  N, except  for 
K n for  equal-s ized spheres.  This  difficulty arises because the curves for N and K n have large slopes 
when the spheres are  near ly  touching.  Nonetheless ,  we have ex t rapo la t ed  the curves in figures 2-5 
to the l imit  (a~ + a 2 ) / l  ~ 1 with the results listed in table  2. 

To more  accura te ly  descr ibe the behav io r  o f  a dumbbe l l  with a small  separa t ion  distance,  the 
results o f  an a sympto t i c  so lu t ion  o f  the " f ree"  case for  near ly  touching  spheres could  be combined  
with exist ing results for  the two-sphere  g rand  resistance mat r ix  using the p rocedure  deve loped  in 
this paper .  The exact  so lu t ion  for the case when the spheres touch requires  the use o f  a tangent  
sphere coord ina t e  system. This  analysis  has been pe r fo rmed  for  the case when e is para l le l  with 

Table 2. Extrapolations of the curves in figures 2-5 to 
(al + a 2 ) / l ~  1 ~ 

a l /a  2 K p K n N Xol 

0.20 0.9852 0.9650 
0.50 0.8420 0 . 6 9 7 9  0 . 7 9 3 8  0.7918 
1.00 0.5000 0.5000 1.0553 0.5000 

~Linear extrapolations were performed using the slope at 
(aj + a2)/l = 0.99, obtained by a cubic-spline fit. 
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E~ for equal-sized spheres with the result that K p = 1/2, in agreement with the result predicted by 
the symmetry arguments leading to [31] (Fair 1990). 

At small separation distances the double layers of the spheres may overlap. This overlap would 
result in interactions of the double layers, a situation assumed not to exist in deriving the solutions 
for the "free" case used in this paper. These double-layer interactions would occur over a small 
surface area of the dumbbell and might be expected to produce local effects of O((xai)  -~ ). If this 
assertion is correct, such effects would be small for dumbbells with thin double layers and the 
behavior predicted by our model should represent real systems. 

ELECTROSTATIC A L I G N M E N T  OF DUMBBELLS 

While the translational velocity is certainly of interest in conventional electrophoresis, whether 
for purposes of charge characterization or particle separation, rotational motion is the more 
striking result because Smoluchowski's theory for particles of uniform zeta potential predicts no 
rotation. The consequences of rotation depend on the relative strength of the electrophoretic 
alignment vs Brownian motion or the shear rate of the suspending fluid. 

The rotary P6clet number is a dimensionless parameter which quantifies the degree of alignment 
achieved by an applied electric field despite the randomizing effect of Brownian motion: 

In l [32] 
P e r -  D r ' 

where D r is the rotational diffusion coefficient about an axis perpendicular to e. When Per > 1, the 
particles are strongly aligned. D r can be expressed in terms of the resistance of the dumbbell to 
rotation and fluid properties: 

k T  
D r qKr, [33] 

where K r is a resistance scalar of the grand resistance matrix for a dumbbell R d (see appendix C) 
for rotation about an axis perpendicular to e which passes through the center of hydrodynamic 
stress. K r can be written in terms of the resistance scalars of R: 

K r = [(IXo,)2(R~t + R~2 + R~I + R~2) - (lXol)(R]3 + R]4 + g)3 -~ R~4) 

+ (lXo,)(R),  + RS32 + RS41 + R~42) - (PXo,)(R~2 + R~, + 2R~z) 

+ 12(R~2 ) + l(R~23 + R~,~ - R~32 - R~42) + (R~3.4- R~, + R~3 + R~)]. [34] 

The Per for the electrophoretic alignment can be expressed in general terms by 

Pe, = [ 3 ' l ( 2 - ( ~ l E ~  ( la'a2 ) l H  \at  -F- a2/d [35] 

where 0 is the solid angle between e and E~. H is a dimensionless parameter, plotted in figure 6, 
which depends on the separation distance and the ratio of the spheres' radii: 

r( al+a2 ) 
H = N K  -6~fl-al a2 , [36] 

such that H--* 1 as l/(a~ + a : ) ~  ~ .  In an aqueous solution at 25°C with an applied field of 
1000 V/m, dumbbells (a~ = 0.5/~m, a2 = 0.5 pm, / = 1.01/am) whose spheres differ in zeta potential 
by k T / e  have Per < 1 only if 0 < 2 °, indicating that the dumbbells are almost completely aligned. 

The ability of an applied electric field to orient dumbbells when the suspension is under shear 
(~ = shear rate) is determined by the expression 

E(C2 - ~, 

which is the ratio of the characteristic magnitude of the angular velocity caused by the electric field 
to that due to fluid vorticity. To obtain a sense of the field required to align the particles, we 
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H 2 

l I I I I I I I 

t0 
.a 

at-1- a:~ 

Figure 6. H, obtained using [36] and the values listed in table 1, vs the dimensionless center-to-center 
distance. 

consider micron-sized dumbbells (l = 1/zm) in water at 25°C, with the two spheres differing in zeta 
potential by kT/e. Taking N = 1 for the purpose of this order-of-magnitude estimate, the criterion 
for alignment of the dumbbells, which is derived by requiring the expression in [37] to greatly exceed 
unity, is 

E~ >> 50~, [381 

where E~ is in V/m and $ is in s -l. This calculation indicates that only modest electric fields are 
needed to align these types of particles, even when the shear rate is rather large (say, 100-1000 s-I). 
Since orientation of nonspherical particles affects rheological properties, one might hope to adjust 
the rheology of a suspension of dipolar dumbbells by controlling the magnitude and direction of 
the electric field. 

SUMMARY 

Our method of constructing a solution for the electrophoretic mobility coefficients for charged 
dumbbells utilizes published results for the two-sphere hydrodynamics of electrophoresis and 
Stokes flow. The translational and rotational mobilities for electrophoresis of a rigid dumbbell 
can be calculated directly from [27] and the method-of-reflections values for the scalar re- 
sistance coefficients found in appendix A; figures 3-5 show that this calculation is accurate 
except when the two spheres of the dumbbell almost touch. To extend the calculations to 
small separation distances for values of at/a 2 not considered here, one would need to solve 
the "free" problem of electrophoresis in a manner similar to Keh & Chen (1989a, b). We have 
estimated the mobility coefficients for the case of touching spheres by extrapolating our numerical 
calculations in a reasonable but still arbitrary manner to l/al + a2)~ 1; these values are listed in 
table 2. 

The motion of heterogeneous colloids, whether single particles of nonuniform surface charge, 
such as clay, or aggregates formed by single particles of different surface charge, has received 
little attention. Our analysis shows that even a small difference in the zeta potential between 
the two spheres of a dumbbell would couple with the applied electric field to align the 
dumbbell. Order-of-magnitude estimates indicate that rather modest electric fields are necessary to 
control the alignment of micron-sized dumbbells, even when the suspension is sheared, if the 
difference in zeta potentials of the spheres is of order kT/e. Such alignment should be detectable 
by optical and rheological measurements, thereby pointing toward an experimental route for 
evaluating the quantitative accuracy of the assumptions on which the analysis presented here is 
based. 
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APPENDIX A 

Method-of-reflections Solution for "Free" Problem Parameters and the Scalar Components of  R 

Chen & Keh (1988) provide a method-of-reflections solution for the dimensionless parameters 
in [15]: 

A~ = (a~)! -3 + - -  + O(/-s), [A.1] 

0 ,42 = (a~)1-3 + - -  + O(l-8), [A.2] 
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8,=(-~2 ~)1-3 +(~)1-6 +o(1-8), [A.3I 

/ _a3~3N 
[A.4] 

and 

C , = ( ~ ) l - 7  +O(1-9) [A.5] 

C z = ( ~ ) l - 7  + O(l-9). [A.6] 

The method-of-reflections results for the scalar components of the grand resistance matrix R were 
extracted from the work of Jeffrey & Onishi (1984a) and are listed below using the notation of [24]. 
The resistance scalars not listed are all zero except for those associated with rotation about e 
(RP3, R~4 , R~3, R~) which are not required for the analysis in this paper. 

I ( ~ )  ( -3a~a281a2a  2, 9 ~ )  
R p, = 67ral 1 + l-2 + 2 ~- ~ + l-4 

( ~  2704a22 281a~a~ 81a~a~ 9ala~'~ 1 
+ + --i6 - +  64 F---~+--4-) l-6+0(1-8) ' [A.7] 

I ( ~a_~ ) ( -3ala381a2a2 ~ ) 1 - 4  
R~z=67ra2 1 + l - 2 +  2 ~ - ~ +  

+/a~a~. 27a~a 4 281a~a~ 3 81a4a~ 9a~a2"~ 1 
~ , T  + --Tg --4 64 ~ - - - ~ + ~ )  l-6+O(l-s) ' [A.8] 

I (~)  ( ~ 23 ) /9a~a2 243al a3 + 27al a 2 1_ 3 + 
R~2 = - 67~al l-i + _ 8 k-----~- 4 32 

+ kT/9a~a22 + 405a4a~32 I- --1515a~a4128 + --405a2a2532 + T)9ala6'~'71- .-k 0(• -9 ) 1 ' 

t-94a-----~ ) 1-5 

[A.9] 

I(3a,)l_l (ala~ 27a~a2 ~ ) l - 3  /'9aZa~ 243a~a2" 9a4a2~.-5 
R~,=--6naz -~- + - T +  ~ ~ T  -~ ~ ~ - T )  1 

/9a~a~ 405a~a 4 1515a~a32405a~a~ 
+ ~ T  + 32 t 1 2 ~  + 3 ~  

-Ji- ~ )  1-7 -31- 0 (1-9)1 , [A.10] 

I (9a'a2~l-2 ( ~  81a~a~ 
R~,=6rca, 1 + \  16 J + + 2 5 ~ -  

9%a~)l-4 F - -  

 la a4 V )  ] + \  16 + ~ +  409~  t - ~ +  l-6+0(1-8 ) , [A.lll 

[ ( ~  81a,a29ala2) _4 [9al a2"~ 22 3 R~2=6rca: 1 +~-~--)l-2+ +~-~--~--+~ l 

(ala 5, 27a~a~ 1241a~a 3 81aaa~ ~ ) l _  6 
+ \  16 + 3 ~  I- 4 0 9 ~ + ~ +  

+ O(l-8)], [A.12] 
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[A.131 

+ 
9afa: 

8+ 

1053afa: 19083afa: 1053afa: 9aya, 

1024 + 16384 + lo24 + -+ l-T+ OV)], 

R& = -Ri, = -4xa: [(9d+)I_j+(3aia2 I 8;:; I 9aia:)l-, 

R$ = -R;, = 47~~: 

R;, = -R& = -4na: 

R;4 = 8na: 

and 

R& = 8na: 

[A.141 

[A.151 

[A.161 

[A.171 

[A.181 

[A.191 

[A.201 

[A.2 l] 

[A.221 
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A P P E N D I X  B 

Corrections for Calculation of Resistance Scalars 
We used three corrections to obtain the resistance scalars from the work of Jeffrey & Onishi 

(1984a). First, their [4.9], which is part of a set of recurrence relations, has a sign error in one of 
the subscripts and should read 

,Z s e  
Vn~ = Pn~ + (n + 1) (2n + 3) ! + 1 ~q - ') ~ - n - !~. [B. 11 

With this correction our expressions for fk agree exactly with the expressions they list under their 
[4.14]. The other two corrections apply to the functions g4 and g5 used in their [7.15] to calculate 
y c .  These functions should be 

22 
g4 = ~-~ (1 + ),)-! lB.2] 

and 

1 
g5 = ~ 2(43 - 242 + 43),2)(1 + ),)-!. [B.3] 

Also note that g5 has been corrected by a factor of  2 to agree with the asymptotic expressions given 
by Jeffrey & Onishi (1984b) using their [2.27] and [4.2]. 

A P P E N D I X  C 

Evaluation of Xo, 
To determine the location of  the center of hydrodynamic stress for a dumbbell designated by 

the subscript "o" ,  we first develop expressions for the force and torque in terms of the grand 
resistance matrix for two spheres. The total force on the dumbbell F d is simply the sum of the forces 
on the spheres: 

F d = F! + F2. [C.l] 

The total torque about the origin of the dumbbell is 

T~o = TI + T2 + go! × FI  + to2 × 172, [C.2] 

where Fi and Ti are the hydrodynamic force and torque on sphere i. These two relationships can 
be expressed more compactly as I'l 

Td = Do T! ' 

T2 

where Do depends on the origin through its dependence on roi. Rigid-body mechanics require 

U, = U d + ~ x ro, [C.4] 

and 

f~, = f~, [C.5] 

where Udo and fF  are arbitrary and U~ is evaluated at the center of sphere i. The above can be written 
more compactly as 

u~ _/U~o~ 

t12 

[C.6] 
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where Go depends on the choice of  origin through its dependence on roi. The grand resistance matrix 
for a dumbbell R d relates the forces and torques to the translational and angular velocity of  the 
dumbbell: 

d U~o 

We can express R d in terms of R by using the formalism of [23] and by combining [C.3], [C.6] 
and [C.7]: 

R d = D o R G o .  [C.8] 

We define Xot to be the normalized distance from the origin to the center of sphere 1 such that 

rol = - Xol le [C.9a] 

and 

ro2 = (1 - X0~ )le. [C.9b] 

By substituting [C.9] into the expressions for Do and Go and using [C.8], we can express R d in terms 
of  Xo~. Xo~ is found in terms of  the resistance scalars of R by requiring R d to be diagonal, so that 
the rotational and translational motions are uncoupled at the origin: 

l(R~l + R~2) - (R~, + R~2 + R,~I + R,~2) 
Xo, = [C. 10] 

l(R~ + R~2 + R~ + R~2) 

Figure 2 shows Xo~ as a function of  the distance between the centers of  the spheres and the ratio 
of  their sizes. 

MF 16/4---I 


